EXAMINATIONS COUNCIL OF ESWATINI Junior Certificate Examination | CANDIDATE
NAME | | | | |-------------------|-----------------------------------|----------------------|-------------------| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | SCIENCE | | | 414/02 | | Paper 2 | | Octob | er/November 2022 | | | | | 1 hour 45 Minutes | | Candidates ans | swer on the Question Paper. | | | | Additional Mate | erials required: Electronic Calcu | ulators may be used. | | | | | | | #### **READ THESE INSTRUCTIONS FIRST** Write your name, centre number and candidate number in the spaces provided. Write in dark blue or black ink pen in the spaces provided on the Question Paper. You may use an HB pencil for any diagrams, graphs, tables, or rough working. Do **not** use staples, paper clips, highlighters, or correction fluid. This paper consists of two sections (Section A and B). Answer **all** questions in both sections **A** and **B**. A copy of the Periodic Table is printed on page 14. The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80. | Question | Examiner's use | |----------|----------------| | Sec | tion A | | 1 | | | 2 | | | 3 | | | 4 | | | 5 | | | 6 | | | 7 | | | 8 | | | 9 | | | Sec | tion B | | 10 | | | Total | | | | | This document consists of 14 printed pages and 2 blank pages. ©ECESWA 2022 [Turn over ## **SECTION A** | San | d is accidentally added into a beaker containing iodine crystals. | |------|--| | lodi | ne crystals sublime on heating while sand does not sublime. | | (a) | Draw, in the box below, the arrangement of particles in solid iodine. | | | | | | | | | | | | | | | | | | [2] | | (b) | Explain the sublimation of solid iodine in terms of the kinetic particle theory. | | | | | | | | | [2] | | (c) | Explain why sand does not sublime together with iodine on heating. | | | | | | [1] | | (d) | State the group and period number of the Periodic Table in which Silicon is | | | found. | | | group | | | period | | | [2] | | | [Total: 7] | 1 **2** (a) Fig. 2.1 shows a light ray passing from water to air. Fig. 2.1 | (i) | Name the proces | ss occurring in Fig. 2.1. | |-----|-----------------|---------------------------| |-----|-----------------|---------------------------|[1] (ii) Explain why medium A is air. (iii) Name the angle \boldsymbol{c} in Fig. 2.1.[1] **(b)** Fig. 2.2 shows a parallel beam of light incident on a convex lens. Fig. 2.2 (i) Complete the ray diagram in Fig. 2.2 to show the direction of the beam of light after it passes through the lens. [2] (ii) The convex lens is then replaced with a concave lens. State the effect this has on the beam of light as it passes through the lens.[1] (iii) State one use of a convex lens in our daily life.[1] [Total: 8] **3** Fig.3.1 shows a diagram of a plant growing inside a dark box with a hole on the side. Fig. 3.1 | (a) | State the characteristic of living things shown by the plant in Fig. 3.1. | |-----|--| | | [1] | | (b) | Explain why the plant grows towards the hole at the side of the box. | | | | | | | | | [2] | | | | | (c) | Describe two characteristics of the plant on Fig. 3.1 that show it is dicotyledonous. | | | 1 | (d) Fig. 3.2 shows a diagram of a leaf cell. | | | Fig. 3.2 | | |---|-----|---|------------------------| | | | Label, using a label line and the letter A on Fig. 3.2, the part that cannot be found in a red blood cell. | [1]
otal: 6] | | 4 | Moo | | tai. Oj | | 4 | | gnesium is a metal. | | | | (a) | State one physical property of magnesium that shows it is a metal. | | | | | | | | | | | [1] | | | Mag | gnesium ribbon burns in air. | | | | (b) | Describe two observations made when magnesium ribbon burns in air. | | | | | 1 | | | | | 2 | [2] | | | (c) | Explain why the burning of magnesium ribbon is: | | | | | (i) an exothermic reaction, | | | | | | | | | | | [1] | | | | | | | | | (ii) a chemical change. | | | | | | | | | | | [1] | | | | | | | | (d) | Write down the word equation for the burning of magnesium in air. | | | | | | [2] | | | | [Tot | tal: 7] | | | | | | **5 (a)** Fig. 5.1 shows a strong man pushing a door at the pivot and a small boy pushing the same door, the opposite way at the handle. Fig. 5.1 (i) The small boy exerts a force of 20 N at 0.75 m away from the pivot. Calculate the moment of force that the boy is exerting about the pivot. | | moment =Nm [2] | |------|---| | (ii) | Explain why the strong man would not succeed in closing the door. | | | | | | | | | [2] | ©ECESWA 414/01/O/N/2022 (b) Fig. 5.2 is an example of a lever. Fig. 5.2 | | (i) | Label, using a line and the letter B , the force in Fig. 5.2. | [1] | |-----|------|--|--| | | (ii) | Define the term <i>lever</i> . | | | | | | | | | | | | | (a) | | nplete, by filling in the blanks, the paragraph describing the role of the | V] | | | The | tongue is a organ. The tongue has | | | | cell | s which convert to nerve impulses. The | | | | neu | rone transmits the nerve impulse to the brain. | 4] | | (b) | | | | | | (i) | Explain why alcohol can be classified as a drug. | | | | | | | | | | | | | | | | [2] | | | (ii) | Describe two effects on the body caused by the abuse of cannabis. | | | | | 1 | | | | | 2[| 2] | | | | [Total: | 8] | | | | (ii) (a) Contong The cell neu (b) The peo (i) | (ii) Define the term lever. [Total: (a) Complete, by filling in the blanks, the paragraph describing the role of the tongue in coordination and response. The tongue is a | **7** Fig. 7.1 shows an experiment to investigate the conditions necessary for rusting to occur. Fig. 7.1 | Afte | r 24 hours, it was observed that only the paper clip in test-tube 2 has rusted. | |------|--| | (a) | Explain why rusting did not occur in test-tube 1. | | | | | | | | | [2] | | (b) | Oiling and galvanising are methods of rust prevention. | | | Explain why galvanising is a better method of rust prevention than oiling. | | | | | | | | | | | | [2] | | (c) | Two alloys of iron are mild steel and stainless steel. | | | (i) Name the element that is added to iron to form mild steel. | | | [1] | | | (ii) State one use of stainless steel. | | | [1] | | | [Total: 6] | ©ECESWA 414/01/O/N/2022 | 8 | A man lifts a brick using | ng a force of 50 N | N from the floor to a | shelf that is 2 m high. | |---|---------------------------|--------------------|-----------------------|-------------------------| | | | | | | | (a) Calculate the amount of work he doe | |---| |---| | | work =J [2] | |-----|---| | (b) | The man uses energy to do the work. | | | State the energy conversions that take place as the man does the work. | | | | | (c) | Solids, liquids and gases expand when heated. | | | State one application and one consequence of thermal expansion in solids. | | | application | | | | | | consequence | | | | | | [2] | | | [Total: 6] | **9** Fig. 9.1 shows the cross section of a male reproductive system. Fig. 9.1 | (a) | Name the part labelled C in Fig. 9.1. | |-----|--| | | [1] | | (b) | Testes produce sperms. | | | Describe the function of the sperm during the formation of an offspring. | | | | | | [2] | | | [Total: 6] | |-----|--| | | [1] | | | (ii) State how gonorrhoea is treated. | | | [1] | | | | | | (i) Describe the symptoms of gonorrhoea in man. | | (d) | Gonorrhoea is a sexually transmitted infection. | | | [1] | | | | | | Describe how the condom prevents pregnancy. | | (c) | A condom can be used during sexual intercourse to prevent pregnancy. | #### **SECTION B** 10 (a) A student carries out an experiment to compare the reactivity of the metals E, F, G and H. She uses metal strips of equal sizes and reacts them with the same amount of dilute acid. Table 10.1 shows the observations she makes. **Table 10.1** | metal | observations | |-------|------------------------| | E | few bubbles produced | | F | no bubbles produced | | G | fewer bubbles | | Н | most number of bubbles | | (i) | State the reason for the observation made for metal F . | | |-------|--|---------| | | | [1] | | (ii) | List the metals in order of reactivity, starting with the most reactive metal. | | | | most reactive | | | | | | | | | | | | least reactive | [3] | | | | | | (iii) | The student collects the hydrogen gas produced. | | | | Describe how she will test for the presence of hydrogen gas. | | | | test | | | | result | | | | | [2] | | | | | | (iv) | between metal E and dilute acid. | | | | |
[1] | | | | נין | (b) A student connects a circuit as shown in Fig. 10.1. | | 2Ω 1Ω | |-------|--| | | Fig. 10.1 | | (i) | State the value of the current flowing through the 2Ω bulb in Fig.10.1. [1] | | (ii) | Describe the function of the fuse in Fig. 10.1. | | | [1] | | (iii) | The voltage across the 2Ω bulb is $2V$. | | | Calculate the power of the 2Ω bulb in Fig. 10.1. | | | | | | | | | <i>P</i> =[2] | | (iv) | The student adds a third cell to the circuit. | | | State and explain how the brightness of the bulbs in the circuit is affected. | | | effect on brightness | | | explanation | | | [2] | | (v) | One of the bulbs in the circuit in Fig. 10.1 blows off. | | | State the observation made by the student after the bulb blows off. | | | [41] | (c) A student investigates the need for carbon dioxide in photosynthesis. He destarches two potted plants K and L and puts them in sunlight for a few hours as shown in Fig. 10.2. Fig. 10.2 | (i) | Describe how the student destarches the plants. | |-------|---| | | | | | [1] | | (ii) | He puts a leaf from plant K in boiling water for two minutes. He then | | | removes chlorophyll from the leaf. | | | Describe how the student removes the chlorophyll. | | | | | | | | | [2] | | (iii) | He rinses the leaf in cold water after removing chlorophyll. | | | He then spreads the leaf on a tile and adds some drops of a reagent on the leaf to test for starch. | | | Name the reagent he uses. | | | [1] | | (iv) | State and explain one difference that would be observed in the results | | | of the test for starch if a leaf from plant L was used. | | | difference | | | | | | | | | explanation | | | | | | [2] | [Total: 20] DATA SHEET The Periodic Table of the Elements | Key | * 58–7
† 90– | 223
Fr
Francium
87 | 133
Cs
Caesium | Rb
Rb
Rubidium | 39
X
Potassium | 23
Na
Sodium | 7 Lithium | | _ | | |--|---|------------------------------------|---|---------------------------------------|------------------------------|--------------------------------|----------------------------|---------------|----------|-------| | × | '1 Lanth
103 Actii | 226
Ra
n Radium | 137
Ba
n Barium | 88 Sr n Strontium | 40 Ca Calcium | 24
Mg
Magnesium | 9 Beyllium | | = | | | X = atomic symbolb = atomic (proton) number | * 58–71 Lanthanoid series
† 90–103 Actinoid series | 6 227 a AC um Actinium + | 7 139 178 a La Hf Jm Lanthanum Hafnium 57 72 | 3 89 91 Y Zr Yttrium Zroonium 39 40 | um Scandium Titanium 21 22 | sum | im (7) | | | | | 90
T | 140
Oe
Cerium
58 | | 181 Ta n Tantalum 73 | 93
Nb
Niobium | n Vanadium 23 | | | | | | | Protactinium
91 | Praseodymium 59 | _ | 184 W Tungsten | 96
Mo
Molybdenum | 52
Cr
Chromium | | | | | | | Uranium
92 | 144
Nd
Neodymium
60 | | 186
Re
Rhenium | Tc
Technetium | Mn
Manganese
25 | | | | | | | Neptunium 93 | Pm Promethium 61 | | 190
OS
Osmium | 101 Ru Ruthenium | 56 T@ Iron | | | 1
Hydrogen | | Group | | Pu Plutonium 94 | 150 Sm Samarium 62 | | 192 Ir
Ir | 103
Rh
Rhodium | 59
Co
Cobalt | | | | | Gro | | Americium
95 | 152 Europium 63 | | 195
Platinum
78 | 106
Pd
Palladium | 59
Ni
Nickel | | | | | Group | | Cm
Curium
96 | 157 Gd Gadolinium 64 247 | | 197
Au
Gold | 108
Ag
Silver | 64
Cu
Copper | | | | | | | Bk Berkelium 97 | 159 Tb Terbium 65 | | 201
Hg
Mercury | Cadmium 48 | 65
Zn
Zinc | | | | | | | Californium
98 | 163 Dy Dysprosium 66 | | 204 T/ Thallium | 115
In
Indium | 70
Ga
Gallium | 27 A! Aluminium | 11
Boron | | = | | | Einsteinium
99 | 165
Ho
Holmium
67 | | 207
Pb
Lead | 119
Sn
Tin | 73
Ge
Germanium | 28
Si
Silicon | 12
C
Carbon | | < | | | Fm
Fermium
100 | 167 TT Erbium 68 | | 209
Bi
Bismuth | 122
Sb
Antimony | 75
As
Arsenic | 31
P
Phosphorus | 14
X
Nitrogen | | < | | | Md
Mendelevium
101 | 169 Tm Thullium 69 | | 209
Po
Polonium
84 | 128 Te Tellurium 52 | 79
Se
Selenium | 32
S
Sulfur | 16
O
Oxygen
8 | | <u>≤</u> | | | 3 | 173 Yb Ytterbium 70 259 | | 210
At
Astatine
85 | 127
I
Iodine
53 | Br
Br
Bromine | 35.5
Q /
Chlorine | 19
T
Fluorine | | \leq | | | Lawrencium
103 | 175 Lu Lutetium 71 | | 222
Rn
Radon
86 | 131 Xe Xenon 54 | 84
Xr
Krypton | 40
Ar
18 | 20
Ne
10 | Helium | 0 | | The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). ### **BLANK PAGE** #### **BLANK PAGE** Permission to reproduce items where third party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (ECESWA) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.